Pluto-Charon Satellites

Dynamics and Masses

Scott Kenyon & Ben Bromley AJ 163:238 (2022)

Project Goals

Satellite masses & orbital stability

Circumbinary dynamics

Formation models

N-Body Calculations

- Brozovic+ state vector from HST initial positions and velocities
- Symplectic integrator
- Vary satellite masses
- Identify stable systems (4.5 Gyr)
 257 billion P-C orbits
- Lifetimes for unstable systems

Nominal (adopted) masses

- M_{S,N,K,H} (units of 10¹⁸ grams)
- Styx: 0.6 (ρ ~ 1 gcm⁻³)
- Nix: 45 (Brozovic, ρ ~ 1.5 gcm⁻³)
- Kerberos: 0.9 (ρ ~ 1 gcm⁻³)
- Hydra: 48 (Brozovic, ρ ~ 1.25 gcm⁻³)

Kenyon & Bromley 2019

Varying Satellite Masses

For all satellites

mass = $f * m_{\{S,N,K,H\}}$

 For one satellite (sometimes two) mass = f_{S,N,K,H} * m_{S,N,K,H} others have their adopted mass

Latest Mass Estimates

 Nix, Hydra <= nominal mass Styx, Kerberos <= 1.5X nominal mass System mass < 9.5 x 10¹⁹ g <= sum of nominal masses Bulk density < 1.4 gcm⁻³

Eccentricity

Measurement from state vectors

- Keplerian (single: v, R, and L)
- Numerically (many: R_{min} and R_{max})
- Restricted Three Body Problem
 Lee & Peale (2006)
 single: Bromley & Kenyon (2021)

nclination Eccentricity,

Results

Nix/Hydra

<= nominal masses

Styx/Kerberos

<= 1.5X nominal masses

- N-Body calcs match HST e & i
- Chaotic Dynamics

Limits on satellites outside Hydra

• Origin of e, i, near-resonant orbits Primordial or Evolutionary?