

Solar-Driven Disturbances in the heliosphere and very local interstellar medium

Elena Provornikova¹

M. Opher, V.V. Izmodenov, P. Mostafavi, V.G. Merkin, P. C. Brandt, P. Kollmann, J.D. Richardson

1- The Johns Hopkins Applied Physics Laboratory, Laurel, MD

- Multi-scale structures in the solar wind
- Corotating Interaction Regions from inner to outer heliosphere
- Coronal Mass Ejections forming global disturbances (MIRs)
- Beyond the heliosphere: Shocks in the very local interstellar medium
- Interaction of the interstellar and interplanetary dust with solar wind structures

Multi-scale structure of the solar wind

- Large-scale disturbances in the solar wind (>10⁷ km)
 - Coronal Mass Ejections (CMEs)
 - Corotating Interaction Regions (CIRs)
- Mesoscale structures (~10⁴-10⁶ km) in the solar wind:
 - Magnetic flux tube meandering, small-scale magnetic flux ropes, density fluctuations, CME and CIR substructures
- Small ion-kinetic scale (<10³ km): MHD and kinetic waves

Resolving mesoscales in global solar wind simulation for the first time

• Multi-scale structures in the solar wind

- Corotating Interaction Regions from inner to outer heliosphere
- Coronal Mass Ejections forming global disturbances (MIRs)
- Beyond the heliosphere: Shocks in the very local interstellar medium
- Interaction of the interstellar and interplanetary dust with solar wind structures

,apl,

Corotating Interaction Regions

Gosling and Pizzo 1999

- Region with high plasma density, pressure, magnetic field
- Forward-reverse shocks form at distances 2-8 AU from the Sun
- Measured in-situ by L1 observatories, Ulysses, Voyagers, Pioneer

Elena Provornikova

CIRs are complex long-lived 3D structures

- Forward shocks propagate toward the equator
- Reverse shocks propagate toward the poles
- Ulysses:
 - More forward shocks at low heliolatitudes (<10°)
 - More reverse shocks at higher heliolatitudes (>30°)
 - Both forward and reverse shocks at mid latitudes

Guo and Frorinski 2014

New Horizons observed successors of CIRs at 30-35 AU

- Interpreted at forward shocks associated with CIR remnants
- Similar plasma structures were detected by Voyager 2 at 45 AU (Lazarus et al. 1999)
- What processes led to a lack of reverse shocks at these heliocentric distances?
 - 3D evolution: reverse shocks are dominant at higher latitudes
 - Reverse shocks become weak in CIR merging process?

Weakening of CIR shocks in the heliosphere

BU Global Model

Simulation of CIR plasma structures (*Provornikova et al. 2012*)

- Reverse shocks weaken and disappear due to interaction with rarefaction waves behind the CIRs in the solar wind.
- Forward shocks are left but weaken
- Fast magnetosonic waves propagate in the heliosheath
- Qualitatively agrees with solar wind speed profiles observed by SWAP/New Horizons

Simulations of complex 3D solar wind structure GAMERA-Helio model 0.1-10 AU

- Solar wind driven by conditions in the solar corona 0.1 AU
- GAMERA-Helio model (Merkin+2011, Merkin+2016, Mostafavi+2022)
- Very complex structure of the solar wind
- Future work to extend beyond to New Horizons distances

Latitude-longitude maps of the solar wind at 0.1 AU Declining phase

Simulations of complex 3D solar wind structure GAMERA-Helio model 1-10 AU

Solar wind structure is much more complex than in simplified models

Future work: To extend the model to New Horizons location and beyond, compare to SWAP

Elena Provornikova

APL

- Multi-scale structures in the solar wind
- Corotating Interaction Regions from inner to outer heliosphere
- Coronal Mass Ejections forming global disturbances (MIRs)
- Beyond the heliosphere: Shocks in the very local interstellar medium
- Interaction of the interstellar and interplanetary dust with solar wind structures

,apl,

Solar Coronal Mass Ejections and MIRs

Magnetized clouds of plasma released from the Sun, merge in the heliosphere and produce large-scale disturbances in the solar wind and in the VLISM

MIR in Outer Heliosphere

Richardson et al 2006

- CMEs expand, merge forming MIRs
- Drive shocks in outer heliosphere
- Significant change in solar wind parameters
- Modulate transport of cosmic rays

MIRs in transit through heliospheric boundaries

- Five dimensionless parameters define the flow after shocks' interaction
- Shocks, other type discontinuities and waves arise in interaction

3D simulation of MIR-driven shock interaction with the Termination Shock

Provornikova et al. 2013

- Large fluctuations of solar wind due to shock-shock interaction
- Highly variable plasma in heliosheath

APL

Reflection of waves inside the heliosheath

Washimi et al. 2011

- Shocks and pressure pulses bounce to heliopause moving it outward
- Magnetosonic waves reflect from the heliopause (or plasma depletion layer?) back inside heliosheath
- Reflected waves bounce to termination shock and move it inward

- Multi-scale structures in the solar wind
- Corotating Interaction Regions from inner to outer heliosphere
- Coronal Mass Ejections forming global disturbances (MIRs)
- Beyond the heliosphere: Shocks in the very local interstellar medium
- Interaction of the interstellar and interplanetary dust with solar wind structures

,apl,

Voyager 1 observations beyond the Heliopause

Voyager 1 observations: 2 shocks and 2 pressure fronts

APL

COSPAR 2022

Voyager 1 observations (sh1)

- Shock 1 (sh1):
- In situ observations of plasma oscillations that were generated by electrons accelerated by a shock.
- Also an increase in B.
- Weak MHD shock: $B_2/B_1 = 1.4$
- Laminar, subcritical, resistive, quasi-perpendicular shock.
- Shock thickness = 8.7 days
- ~10⁴ broader than a shock with similar properties at 1 au. (30-60s).

Burlaga et al. (2013)

What is the origin of shocks in VLISM?

- Driven by disturbances originated near the Sun (CMEs, CIRs, GMIRs). They evolve as they propagate.
- Shocks can merge and generate stronger shocks.

- The interaction of a shock and HTS and HP is a very complicated problem.
- Different model of shock propagation:
- Whang & Burlaga; Story & Zank; Washimi et al; Provornikova et al., Washimi et al., ... : shock propagation, collision of shock with HTS and HP. Movement of HTS and HP and propagation of shocks in the VLISM.
- Kim et al. (2017): 3D data-driven time-dependent model can predict the arrival of disturbances and corresponding radio emissions to V1 in the VLISM with reasonable accuracy.

COSPAR 2022

- Multi-scale structures in the solar wind
- Corotating Interaction Regions from inner to outer heliosphere
- Coronal Mass Ejections forming global disturbances (MIRs)
- Beyond the heliosphere: Shocks in the very local interstellar medium
- Interaction of the interstellar and interplanetary dust with solar wind structures

Interaction of interstellar dust with solar wind structures

- Focusing and defocusing of the interstellar dust in the heliosphere is the effect of the global static magnetic field configuration
- Do large-scale disturbances in the solar wind like GMIRs affect propagation of interstellar dust?
- For small particles gyroradii is larger or comparable with the scales of GMIRs – dust scattering?

Slavin+2012, Alexashov et al. 2016, Sterken+2022

Summary

- Lack of reverse shocks observed by SWAP/New Horizons may be a result of their weakening in the interaction with the rarefaction regions
- Merged CIRs and CMEs drive large-scale disturbances in the distant solar wind and heliosheath, cause displacements of the TS and HP
- Modeling solar wind structures with GAMERA-Helio model at the New Horizons location is in progress

Open Questions

- What will New Horizons observe with an increasing number of CMEs (seen by Parker Solar Probe) as we are transitioning to solar maximum?
- How are solar wind structures measured by New Horizons at large distances linked to the solar corona structure and dynamics?
- What processes control evolution of structures and shocks through the vast region between inner heliosphere observatories and New Horizons?
- Are there effects of large scale solar wind structures on motion of small dust particles?